1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
# -*- coding: utf-8 -*-
"""
pinolo.plugins.markov
~~~~~~~~~~~~~~~~~~~~~
Markov chains for fun.
:copyright: (c) 2013 Daniel Kertesz
:license: BSD, see LICENSE for more details.
"""
import os
import re
import random
import logging
import shutil
import cPickle as pickle
from collections import defaultdict, deque
from pinolo.plugins import Plugin
log = logging.getLogger(__name__)
cleanups = [
# nickname: message -> message
re.compile(r"^[^:]+:", re.UNICODE),
# URL
# xxx://yyyy
# xxxx.yyy/zzzzzz
re.compile(r'''(?x)
(?:
\b\w+://\S+\b
|
(?:\w|\.)+
\.\w{2,3}
\/
\S+
\b)''', re.UNICODE),
# strip misc symbols
re.compile(r"[\[\]\(\):;\"#]", re.UNICODE),
# strip extra white spaces
re.compile(r"\s{2,}", re.UNICODE),
]
class PersistentDict(dict):
def __init__(self, filename, *args, **kwargs):
self.filename = filename
dict.__init__(self, *args, **kwargs)
def save(self):
tmpfile = self.filename + ".tmp"
try:
with open(tmpfile, "wb") as fd:
data = pickle.dump(dict(self), fd, 2)
except Exception, e:
os.remove(tmpfile)
raise
shutil.move(tmpfile, self.filename)
def load(self):
if not os.path.exists(self.filename):
return
with open(self.filename, "rb") as fd:
data = pickle.load(fd)
self.update(data)
class MarkovBrain(object):
def __init__(self, filename, context=2):
self.context = context
self.tokens = PersistentDict(filename)
def load(self):
log.info("Loading markov database")
self.tokens.load()
def save(self):
log.info("Saving markov database")
self.tokens.save()
def lex(self, sentence):
"""Split a sentence"""
words = [word.strip() for word in sentence.split() if len(word)]
return words
def cleanup(self, sentence):
for regexp in cleanups:
sentence = regexp.sub(u"", sentence)
return sentence
def _sequence(self, tokens, context):
seq = deque(tuple(tokens[:context]))
for token in tokens[context:]:
yield tuple(seq), token
seq.popleft()
seq.append(token)
def learn(self, sentence):
sentence = self.cleanup(sentence)
tokens = self.lex(sentence)
if len(tokens) < (self.context + 1):
return
for context, next_word in self._sequence(tokens, self.context):
self.tokens.setdefault(context, {})
weight = self.tokens[context].get(next_word, 0)
self.tokens[context][next_word] = (weight + 1)
def start_from_seed(self, seed):
tokens = self.lex(seed)
if len(tokens) < (self.context + 1):
return None
for context, next_word in self._sequence(tokens, self.context):
if context in self.tokens:
return context
return None
def say(self, seed=None, max_words=50):
# Empty database, we can't talk.
if not self.tokens:
return
if seed:
starter = self.start_from_seed(seed)
else:
starter = None
if starter is None:
starter = random.choice(self.tokens.keys())
sequence = deque(tuple(starter))
sentence = list(starter)
for i in xrange(max_words):
context = tuple(sequence)
try:
next_dict = self.tokens[context]
except KeyError:
break
total = sum(next_dict.itervalues())
select = random.randint(1, total + 1)
for next_word, weight in next_dict.iteritems():
total -= weight
if total <= select:
sentence.append(next_word)
sequence.popleft()
sequence.append(next_word)
break
if sentence[-1].endswith("."):
break
return u" ".join(sentence)
class MarkovPlugin(Plugin):
def __init__(self, bot):
super(MarkovPlugin, self).__init__(bot)
self.db_file = os.path.join(self.bot.config['datadir'], "markov.pickle")
self.markov = MarkovBrain(self.db_file)
self._counter = 0
self.verbosity = self.bot.config.get("markov_verbosity", 97)
self.save_every = self.bot.config.get("markov_save_every", 50)
def activate(self):
self.markov.load()
def deactivate(self):
self.markov.save()
def on_PRIVMSG(self, event):
myname = event.client.current_nickname
if (event.user.nickname == myname or not event.text):
return
if event.text.startswith(myname):
# strip our nickname from the sentence
text = re.sub(r"^%s[:,]?\s+" % myname, u"", event.text)
reply = self.markov.say(text)
if reply:
event.reply(reply, prefix=False)
else:
event.reply(u"sono inibito e non so cosa dire")
else:
self.markov.learn(event.text)
self._counter += 1
if self._counter >= self.save_every:
self._counter = 0
self.markov.save()
if random.randint(0, 100) >= self.verbosity:
reply = self.markov.say(event.text)
if reply:
event.reply(reply, prefix=False)
|